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Infectious Disease Propagation and Chemical Reaction

Networks

Mathematical models are used to study, analyze, forecast epidemics
and explore control strategies of infectious diseases.

Di↵erent approaches- deterministic or stochastic models can be used

Deterministic modelsÊassume that known average rates of interaction
have no random deviation in the populations they represent.

Eg. A population has a 95% chance of surviving annually, then we
can be reasonably certain that 95% of the total population will indeed
survive.
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Infectious Disease Propagation and Chemical Reaction

Networks

Stochastic models allow for random variations due either to
uncertainties on the rates of transmission or to population sizes

Eg A population having a probability 0.95 chance of surviving another
year, random variations changes at the end of the year

with probabilities of having zero survivors, one survivor, two survivors,
and so on, up to the total number of survivors at the end of the year.
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Chemical Reaction

Chemical reaction describes a process in which reactants react
chemically and convert into products by chemical transformation.

It is made up of
A biochemical network is a system that consists of the species (S),
which are the chemical components whose characteristic we wish to
model
the complexes (C), which are non-negative integers that describe how
the species interact, and
Reactions (R), which explain how the reactions can convert one
complex to another.

The biochemical reaction system consists of two parts: (i) a reaction
network, and (ii) a choice of dynamics.
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Reaction Networks Example

A system with three species; A, B, and C where A and a B molecule
merge to form a C molecule, can be described as

A+ B ! C

This network model consists of species S = A,B ,C , complexes
C = A+ B ,C ,and reactions R = A+ B ! C .

The interaction between species that allow transmission of a
pathogen naturally define a network.

The network defines potential transmission routes, an understanding
of its structure can be used as part of disease control.

the study of reaction networks, how they relate to the propagation of
infectious diseases, and the underlying theory provides is a vital tool
to inform infectious disease propagation and,

therefore, potential for disease control
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Approaches to Reaction Network and epidemiology

1 Define a network allow a complete description of spread of a
infectious disease from the knowledge of individual species’ behavior

2 Study the potential transmission routes of an infectious disease within
a population; some are direct, others need thorough study to
implement

3 Use behavioral networks, often generated from known interactions
between individuals within a population

4 Use of movement networks, movement of individuals is another
source of network information for infectious disease dynamics -
meta-population model

5 Use of contact tracing Networks, identified cases are asked about their
recent sexual partners, and these individuals are traced and tested;

6 if found to be infected, then contact tracing is repeated for these
secondary cases.
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The SIR model and its analogy with chemical kinetics

The classic SIR epidemic model resembles a dynamic model of a
batch reactor carrying out an autocatalytic reaction with catalyst
deactivation

Each member of the population is categorized based on their disease
status -Susceptible, Infectious, or Recovered

and possibly, their attributes and the treatment they received - into
compartments

model of theses dynamics is represented by di↵erential equations -
flow of individuals to and from the compartments as the population
mixes

The disease is spread/contracted, and infectees progress through the
stages of the disease

Di↵erential equations are a natural choice -rates at which people are
infected - progress through the stages of the disease
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The SIR model formulation

The classic SIR epidemic model resembles a dynamic model of a
batch reactor carrying out an autocatalytic reaction with catalyst
deactivation

Each member of the population is categorized based on their disease
status

and possibly, their attributes and the treatment they received - into
compartments

model of theses dynamics is represented by di↵erential equations -
flow of individuals to and from the compartments as the population
mixes

the disease is spread/contracted, and infected individuals progress
through the stages of the disease

Di↵erential equations are a natural choice -we can make reasonable
assumptions about the rates at which people are infected - progress
through the stages of the disease
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The SIR model formulation

�.� the reactions

S I R
�[S][I] �[I]

Figure �: The SIR model. The boxes represent the
set of Susceptible, Infectious, and Recovered indi-
viduals. The arrows represent �ow from one com-
partment to another and are annotated with per
capita �ow rates.

Susceptible folks can contract the disease if they
come into contact with an infectious individual.
Once infected, they move into the infectious
compartment, assuming zero delay between in-
fection and the ability to transmit the disease.
This is analogous to an irreversible autocatalytic
chemical reaction [�, �] between a reactant, S,
and catalyst, I:

S + I ��� 2 I {�}

Infectious individuals eventually recover or die from the disease, entering the recovered compart-
ment, and then cannot transmit the disease or contract it again. This is analogous to a reaction where
the catalyst, I, irreversibly degrades or converts to a deactivated form, R:

I ��� R {�}

The R category is sometimes called the Removed category [�] instead, emphasizing its inclusion of
disease-induced deaths.

We assume that recovery from the disease confers permanent immunity to reinfection, thus neglect-
ing the possibility of an R ��� S reaction.

So, the SIR model of an epidemic is analogous to an autocatalytic reaction (rxn. {�}) with catalyst
deactivation (rxn. {�}). An infectious individual (the catalyst, I) (i) converts susceptibles (the reactant,
S) into more infectious individuals (more catalyst) and (ii) recovers (deactivates) with time.

Fig. � depicts the �ow of individuals through compartments under the SIR model, induced by rxns. {�}
and {�}. Note the absence of �ow to/from external populations; as in a closed batch reactor, we
neglect immigration and emigration. Moreover, we take births and deaths (from causes other than
the disease) to be negligible over the time scale of the epidemic.

�.� the dynamic mathematical model

Mathematically, the SIR model [�–�,��] is equivalent to a dynamic model of a well-mixed, isothermal
batch reactor carrying out the two homogeneous, elementary rxns. {�} and {�}.

Let [S](t), [I](t), and [R](t) be the fraction of the population that is susceptible, infectious, and
recovered, respectively, at time t . Considering a large population, we treat [S], [I], and [R] as con-
tinuous variables.

The incidence rate. Assuming their spatial mixing is uniform [��, ��], we invoke the law of mass
action to model the rate at which susceptible and infectious individuals “react” via bimolecular, auto-
catalytic rxn. {�}. The incidence rate of the disease, i.e. the number of new infections per unit time [��],
is then �[S][I] (per capita). A symmetric, bilinear function of [S] and [I], intuitively, the incidence rate

�

Figure: SIR Model

Susceptibles can contract the disease if in contact with an infected.

Once infected and infectious- to I compartment, ie. no delay

This is like to an irreversible autocatalytic chemical reaction between
a reactant, S, and catalyst, I:

S + I ! 2I [1]
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The SIR model formulation

Infectious individuals can recover or die from the disease, -R
compartment, cannot transmit or contract it again

This is analogous to a reaction where the catalyst, I, irreversibly
degrades or converts to a deactivated form, R:

I ! R [2]

We assume that recovery confers permanent immunity to
reinfection,-no possibility of an R ! S reaction.
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The SIR model formulation

An infectious individual (the catalyst, I)
1 converts susceptibles (the reactant, S) into more infectious individuals

(more catalyst I) and
2 recovers (deactivates) with time.

Note the absence of flow to/from external populations; as in a closed
batch reactor

we neglect immigration and emigration

we take births and deaths (from causes other than the disease) to be
negligible over the time scale of the epidemic
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The Mathematics SIR model

SIR model - a well-mixed, isothermal batch reactor carrying out the
two homogeneous, elementary reactions. [1] and [2] above.

Let [S ](t), [I ](t), and [R](t) be the fraction of the population that is
susceptible, infectious, and recovered, respectively, at time t

Considering a large population, we treat [S], [I], and [R] as continuous
variables.

The incidence rate. Assuming their spatial mixing is uniform, - law of
mass action -model the rate at which susceptible and infectious
individuals react via bimolecular, autocatalytic reaction[1]

The recovery rate. - infectious individuals ’decay’ (recover) via
reaction [2] with first-order kinetics, i.e., with rate � (per capita).

The inverse of the first-order recovery rate constant � > 0 is the
average time period that an infected individual is infectious.
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Nonlinear Coupled DE of the SIR model

Ṡ = �� [S ][I ]

İ = �� [S ][I ]� � [I ]

Ṙ = � [I ]

(1)

The parameter � could be estimated independently from studies on
the duration of infectiousness

The parameter � could be identified by fitting di↵erential eqns 2 to
epidemic time series data (case counts)

Adding eqns. - confirms that the SIR model considers a closed system
and neglects demography ; [S ] + [I ] + [R] = 1.

As a consequence, eqns. and fully determine the SIR model dynamics,
and [R](t) follows from [R](t) = 1[S ](t)[I ](t).

Josephine Wairimu (2023): UON CRN and epidemiology July 13, 2023 14 / 20



The replacement and basic reproduction numbers

The replacement number, r = r(t), is the expected number of folks
(directly) infected by a typical infectious individual, mixing in the
population, over the course of their infectiousness

Because the concentration of susceptible folks [S] = [S](t) in uences
the frequency that a typical infectious individual contacts a
susceptible individual, r changes over time

In the SIR model, a typical infectious individual is expected to be
infectious for a time period of ��1.

During this time, the infectee will produce �[S ](t) new infections per
unit time (incidence rate per infectious individual)

The replacement number is therefore: r = r(t) = �
� [S ](t)
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The replacement and basic reproduction numbers

The basic reproduction number, R0, is defined as the initial
replacement number when one infectious individual is introduced into
an all-susceptible population

Because the entire population is susceptible, the replacement number
becomes the R0 =

�
� , S ⇡ 1

R0 is the expected number of infections directly caused by a single
infectious individual introduced into an entirely susceptible population
over the course of their infectiousness

r, and basic reproduction number, R0, are both dimensionless and are
properties of both the disease and the population

r = r(t)changes with time, R0 is constant and defined only at the
initial stage when one infectious individual is introduced to an all-
susceptible population.

The two numbers are related via r(t) = R0[S ](t).
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r and R0 explained

If the basic reproduction number R0 is large , the infectious are
infectious for a long period of time

Then the disease is easily transmitted, and/or the mixing of
susceptibles and infectious is vigorous

If the basic reproduction number R0 is small, the infectious are
infectious for a short period of time

Then the disease not easily transmitted, and/or the mixing of
susceptibles and infectious not vigorous

Under the analogy with chemical kinetics, since the activity and
longevity of the catalyst, I , are embedded in � and � , respectively:

then R0 is large (small) if the catalyst has a high (low) activity and/or
remains active for a long (short) time.

Because r = R0[S ], these remarks hold for the replacement number,
r , as well.
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The initial Conditions

What happens if we introduce a small number of infectious
individuals into a large population of susceptible individuals?
The corresponding initial conditions are:

S(0) = [S ]0, I (0) = [I ]0 R(0) = 0] (2)

with [S ]0 + [I ]0 = 1, [S ]0, [I ]0 > 0, and [I ]0 ⌧ 1.
We consider[R](0) = 0 for the case - exposed to a novel pathogen
without immunity.
The replacement number r(t) is key to understanding SIR model
dynamics
[I ](t) is increasing at time t if the replacement number r(t) > 1 and
decreasing if r(t) < 1,
so r(t) determines the dynamic behaviour of İ (t)

Under CRN analogy, if r0 < 1(r0 > 1), the injected catalyst particles
deactivate via reaction [1] faster (slower) than they catalyze reaction [2] to
propagate autocatalytic reaction[1].
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Analysis of the Endemic SIR Model

Early in the epidemic, the number of infectious folks grows,
approximately, exponentially with growth rate

dI

dt
= (�[S ][I ]� �[I ]

dI

dt
= �(

�

�
[S ]� 1)I

Integrating with respect tot t, is equivalent to

dI

dt
= �(r [S ]� 1)I

dI

dt
= �(r � 1)I , S = 1

The solution gives
[I ](t) = [I ]0 e

r�1)�t

valid only in the initial stage of the epidemic; as the disease spreads,
[S] decreases and diminishes the replacement number
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