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Monostationarity vs. multistationarity

Monostationarity (unique positive steady state) underlies
robust output.
Multistationarity and multistability underlie flexible
response and output switching.
For instance, a bacterium e.coli can switch between
digesting two forms of sugar based on environmental
conditions.
Which networks are capable of producing multistationarity?



Ruling out multistationarity

Theorem (B. Boros )
Every weakly reversible mass action system has a positive steady
state in any positive compatibility class for any choice of rate
constants.

Theorem (Feinberg)
Deficiency zero networks are not multistationary.
Suppose deficiency of a network G is zero.

If G is weakly reversible then for any choice of rate
constants, there is a unique positive steady state in every
positive compatibility class. Furthermore, each steady state
is locally asymptotically stable.
If G is not weakly reversible then there is no positive steady
state for any choice of rate constants.



Ruling out multistationarity

Theorem (Feinberg)
Consider a reaction network G with linkage classes G1, G2, . . . ,
Gl. Let δ denote the deficiency of G, and let δi denote the
deficiency of Gi. Assume that:

1 each linkage class Gi has only one terminal strong linkage
class,

2 δi ≤ 1 for all i = 1, 2, . . . , l, and

3
l∑

i=1
δi = δ.

Then G is not multistationary.



Ruling out multistationarity (other criteria)

Injectivity and Jacobian conditions are helpful in ruling out
multistationarity.
Directed Species Reaction (DSR) graphs give related
network conditions.

Reference: Badal Joshi, and Anne Shiu. A survey of
methods for deciding whether a reaction network is
multistationary. “Chemical Dynamics", special issue of
Mathematical Modelling of Natural Phenomena, Vol.
10, No. 5, (August 2015), pp. 47-67.

https://arxiv.org/abs/1412.5257
https://arxiv.org/abs/1412.5257
https://arxiv.org/abs/1412.5257


Open reaction networks

Open networks exchange mass with the environment.
Fully open networks have inflows and outflows for all
species in the network.

Goal: Look for small fully open networks which are
multistationary/multistable.



Small fully open networks

Example

0
k1−−→←−−
k2

X

2X
k3−→ 3X

Deficiency δ = 4− 2− 1 = 1 =⇒ Def. 0 does not apply!
δ1 = 0, δ2 = 0 =⇒ δ 6= δ1 + δ2 =⇒ Def. 1 theorem does
not apply!
ẋ = k1 − k2x+ k3x

2 = f(x) has Jacobian
f ′(x) = −k2 + 2k3x which has zero at x = k2/2k3 > 0.
Since Jacobian changes sign, the network is NOT injective.

We escaped all three conditions =⇒ multistationarity is
possible.



Small fully open networks

0
k1−−→←−−
k2

X

2X
k3−→ 3X

ẋ = k1 − k2x+ k3x
2

eg. k1 = 1, k2 = 3, k3 = 2 =⇒ ẋ = 1− 3x+ 2x2.
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Steady states at x1 = 0.5 and x2 = 1.



0 � X, 2X → 3X
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Steady states at x1 = 0.5 and x2 = 1.
Stability of steady states!

For some rate constants, there are no positive steady states.
For some rate constants, there is one positive stable steady
state and one positive unstable steady state.
There is a degenerate case with a single unstable steady
state.
Network is multistationary but NOT multistable.



0 � X, 2X → 3X
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Steady states at x1 = 0.5 and x2 = 1.
Stability of steady states!

For some rate constants, there are no positive steady states.
For some rate constants, there is one positive stable steady
state and one positive unstable steady state.
There is a degenerate case with a single unstable steady
state.
Network is multistationary but NOT multistable.



Small fully open networks

0
k1−−→←−−
k2

X

3X
k3−→ 2X

ẋ = k1 − k2x− k3x3



Descartes’ rule of signs

Consider a polynomial p(x) in one variable x.
Maximum number of possible positive zeros = number of
sign changes.
Maximum number of positive zeros − Actual number of
positive zeros is an even number.

Exercise: Apply Descartes’ rule of signs (ROS) to

p(x) = −3 + 4x+ 7x3 − x8 + 2x9 + 3x11 − 15x17

Solution:
Maximum number of positive zeros is 4.
Actual number may be 4, 2 or 0.
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Small fully open networks

0
k1−−→←−−
k2

X

3X
k3−→ 2X

ẋ = k1 − k2x− k3x3

Apply Descartes’ rule of signs:
Maximum one positive steady state.
Maximum number of steady states − Actual number of
positive steady states is an even number.
Conclusion: Exactly one positive steady state for all
possible choices of rate constants.
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Small fully open networks

0
k1−−→←−−
k2

X

2X
k3−−→←−−
k4

3X

ẋ = k1 − k2x+ k3x
2 − k4x3

eg. k1 = 6, k2 = 11, k3 = 6, k4 = 1 =⇒ ẋ = 6− 11x+ 6x2 − x3.
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ẋ = 6− 11x+ 6x2 − x3 = (1− x)(2− x)(3− x)



0 � X, 2X � 3X

Descartes’ rule of signs implies:
Maximum three positive steady states.
Number of steady states ∈ {1, 3}.
(2 steady states are possible, but one is doubly degenerate.
So counted with multiplicity there are 3 steady states).
One stable steady state in all cases.
When there are 3 steady states, 2 are stable and 1 is
unstable.

Conclusion: Network is multistable.



0 � X, 2X � 3X
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2 species, 1 non-flow reaction

0
k1−−→←−−
k2

X, 0
k3−−→←−−
k4

Y

X + Y
k5−−→←−−
k6

2X + 2Y

ẋ = k1 − k2x+ k5xy − k6x2y2

ẏ = k3 − k4y + k5xy − k6x2y2

Note k1 − k2x∗ = k3 − k4y∗.
Solve above for y∗ and plug into
0 = k1 − k2x∗ + k5x

∗y∗ − k6x∗2y∗2

Get equation in x∗ and solve.
Calculate y∗.



3 species, 1 non-flow reaction

0
k1−−→←−−
k2

X, 0
k3−−→←−−
k4

Y, 0
k5−−→←−−
k6

Z

aX + bY + cZ
k7−−→←−−
k8

dX + eY + fZ

ẋ = k1 − k2x+ k7x
aybzc − k8xdyezf

ẏ = k3 − k4y + k7x
aybzc − k8xdyezf

ż = k5 − k6z + k7x
aybzc − k8xdyezf

Gets harder with more species!



Single irreversible non-flow reaction

Theorem (Joshi)
Let n be a positive integer. Let a1, a2, . . . , an, b1, b2, . . . , bn be
nonnegative integers.
The (general) fully open network with one irreversible non-flow
reaction and n species:

0 � X1 0 � X2 · · · 0 � Xn

a1X1 + · · ·+ anXn → b1X1 + · · ·+ bnXn

is multistationary if and only if
∑

i:bi>ai
ai > 1.



Single reversible non-flow reaction

Theorem (Joshi)
Let n be a positive integer. Let a1, a2, . . . , an, b1, b2, . . . , bn be
nonnegative integers. The (general) fully open network with one
reversible non-flow reaction and n species:

0 � X1 0 � X2 · · · 0 � Xn

a1X1 + . . . anXn � b1X1 + . . . bnXn

is multistationary if and only if
∑

i:bi>ai
ai > 1 or∑

i:ai>bi
bi > 1.



Exercises

0
k1−−→←−−
k2

X, 0
k3−−→←−−
k4

Y, 0
k5−−→←−−
k6

Z

aX + bY + cZ
k7−→ dX + eY + fZ (1)

Exercise 1: Find values of a, b, c, d, e, f such that the
reaction network (1) is multistationary.
Exercise 2: Find values of a, b, c, d, e, f such that the
reaction network (1) is not multistationary.
Exercise 3: Is the following reaction network
multistationary?

0
k1−−→←−−
k2

X, 0
k3−−→←−−
k4

Y

X + Y
k5−−→←−−
k6

2X + 2Y



Inheritance of multistationarity

Example

N1 : A→ B , 3A+B → 4A

N2 : A+B → 0 , 3A→ 4A+B

Both N1 and N2 admit multiple steady states within their
respective stoichiometric compatibility classes. But

N1 ∪N2 :

A→ B , 3A+B → 4A

A+B → 0 , 3A→ 4A+B

N1 ∪N2 does not admit multiple steady states.



Inheritance of multistationarity

Theorem
Let N and G be reaction networks that are related in at least one
of the following ways:

1 N is a subnetwork of G which has the same stoichiometric
subspace as G (Joshi, Shiu),

2 N is weakly reversible and G is fully open extension of N
(Craciun, Feinberg),

3 Fully open N is embedded in fully open G (Joshi, Shiu),
4 N is an induced network of G obtained by removing one or

more intermediates (Feliu, Wiuf).
Then, if N admits m positive nondegenerate steady states (for
some choice of rate constants), then G admits at least m positive
nondegenerate steady states (for some choice of rate constants).
Also, if N admits q positive, stable steady states, then G admits
at least q positive, stable steady states.



Inheritance of multistationarity



Inheritance of multistationarity



Example (Fully Open Network G)

0
−→←− A,B,C,D,E

A+ C
−→←− 2A

C +D
−→←− A+B

A+ C + E
−→←− 2D +B



Example (Fully Open Network G and Embedded (Fully Open)
Network N)

0
−→←−A,B,C,D,E

A+ C
−→←− 2A

C +D
−→←− A+B

A+ C + E
−→←− 2D +B



Example (Fully Open Network G and Embedded (Fully Open)
Network N)

0
−→←−A,B,C,D,E

A+ C
−→←− 2A

C +D
−→←− A+B

A+ C + E
−→←− 2D +B

We know that the following network is nondegenerately
multistationary:

0 � A,B

A→ 2A

0← A+B



Phosphofructokinase reaction network (part of glycolysis)

X: Fructose-1,6-biphosphate, Y : Fructose-6-phosphate
Z: Intermediate species (alternate form of
Fructose-1,6-biphosphate)

2X + Y
k1
�
k8

3X

Y
k4
�
k5

0
k3
�
k2

X
k7
�
k6

Z

Reaction Network + Mass-action kinetics yields

ẋ = k1x
2y − k8x3 + k3 − (k2 + k7)x+ k6z

ẏ = −k1x2y + k8x
3 − k4y + k5

ż = k7x− k6z

Is the phosphofructokinase reaction network multistationary?



Step 1. Remove reaction

System with and without Z are steady-state equivalent (up to
projection):

2X + Y
k1
�
k8

3X

Y
k4
�
k5

0
k3
�
k2

X
�
�
�k7

�
k6

Z

Resulting network is fully open.



Step 2. Remove reaction

2X + Y
k1
�

��>
0

k8

3X

Y
k4
�
k5

0
k3
�
k2

X



Step 3. Remove species

Delete species Y :

2X ��+Y
k1−→ 3X

�
�
�

Y
k4
�
k5

0
k3
�
k2

X



Atom of multistationarity

Resulting network is multistationary!
Saw earlier it has 2 positive steady states.

2X
k1−→ 3X

0
k3
�
k2

X

Conclusion: Glycolysis is multistationary.



Thank you!


