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CTMC in short

Continuous time Markov chains incorporate the structure of a discrete time
Markov chain in a continuous time Markov process. Basically, when thinking
about a Continuous time Markov chain you should think of a process that
“jumps” between different states (exactly as in a discrete time Markov chain),
and, before jumping, remains in a given state x for a time ⌧x , which is an
exponential random variable whose rate depend on x .
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A review of the Exponential distribution

We say that T ⇠ exp(�) if any of the following holds:

fT (t) =

(
�e��t if t � 0
0 if t < 0

P(T  t) =

(
1 � e

��t if t � 0
0 if t < 0

P(T > t) =

(
e
��t if t � 0

1 if t < 0

Properties:
E [T ] = 1/�, Var(T ) = 1/�2

Memoryless property: for any t > s � 0 we have

P(T > t + s|T > s) = P(T > t)

.
Bibbona, SP, 3/64






























Exponential races

Exponential races: Let T1,T2, . . . ,Tn be independent random variables, with
Ti ⇠ exp(�i ). Let

V = min{T1,T2, . . . ,Tn} and I s.t. TI = V .

Then:
1 V ⇠ exp (

Pn
i=1 �i )

2 P(I = j) =
�jPn
i=1 �i

3 I and V are independent.
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Exponential races and forgetfulness. Exercise

Let Ti , i 2 {1, 2, 3}, be exponentially distributed with parameters �i . Calculate
the following quantities.

1 For every realization, sort the three exponentials. Denote by T
(1) the

minimum, T (3) the maximun and T
(2) the intermediate one. Calculate

E
⇥
T

(2)⇤.
2 The probability that the second exponential also ranks second (T (2) = T2)

Bibbona, SP, 5/64
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Construction 1

1 We let (Yn)n�0 be a discrete time Markov chain on a state space S . We
denote its transition probabilities by

r(i , j) = P(Yn+1 = j | Yn = i),

with the condition that r(i , i) = 0 for all i 2 S .
2 After arriving (or starting the process at time zero) at state i 2 S , we let

the amount of time we spend in state i , the holding time, be an exponential
random variable with rate �(i). We denote this random variable by ⌧i .

3 After the holding time ⌧i we transition away from state i according to the
probabilities associated with the discrete time Markov chain (Yn)n�0.

4 Finally, we assume that all exponential random variables utilized are
independent of each other and of the discrete time Markov chain (Yn)n�0.
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Construction 2

1 We suppose that the process has just arrived (or is starting) in state i 2 S .
For each j 2 S with r(i , j) > 0 we place an alarm clock on state j set to go
off after an amount of time ⌧ij ⇠ Exp(q(i , j)) where

q(i , j) = �(i) · r(i , j)

All exponential random variables are independent of each other and of all
previous random variables.

2 When the first alarm goes off, we move to the state associated with that
alarm. Formally, we do the following:

We let ⌧i = minj{⌧ij}, and let y 2 S be the index of the minimum.
We then move to state y after a holding time equal to ⌧i .

Bibbona, SP, 7/64
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Equivalence

Theorem
The two constructions are equivalent, in the sense that the distribution of the
process (Xt)t�0 associated with any of the two constructions is the same.
Proof.
This follows from the properties of independent exponential random variables.
E.g. the minimum time ⌧i = minj{⌧ij} is exponential with parameter

X

j2S�{i}

q(i , j) = �(i)
X

j2S
r(i , j) = �(i).

Moreover, the probability that the minimum is achieved at state y is precisely
q(i , y)P
j q(i , j)

=
�(i) · r(i , y)

�(i)
= r(i , y),

The time spent in one state and which state is next are independent r. v.

Bibbona, SP, 8/64
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Definitions

The quantities introduced introduce so far are very important and they have a
name: q(i , j) are called the transition rates of the process.
It was helpful to put the transition probabilities of a discrete time Markov chain
into matrix form. We do the same here. We define the matrix Q to have entries

Q(i , j) =

(
q(i , j) i 6= j

�
P

6̀=i q(i , `) i = j

for all i , j in S . Note that the diagonal is the negative of the sum of the other
terms in its row (this choice will turn out to be clever later on). This matrix is
also called transition rate matrix or generator.

Bibbona, SP, 9/64
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Remarks

1 The values q(i , j) are not probabilities. Specifically, they can take values
larger than 1. Still they are non-negative

2 The row sums of Q are zero.
3 Such matrices (row sums equal to zero, non-negative off-diagonal entries)

are sometimes termed generator matrices in Linear Algebra.
4 Why did we choose to put the q’s in the matrix and not the values r(i , j)?

The reason is that from the q’s we can recover the values r(i , j) and the
values �(i). Specifically,

�(i) =
X

j 6=i

q(i , j) r(i , j) =
q(i , j)

�(i)
=

q(i , j)P
` 6=i q(i , `)

.

From the matrix Q we derive all the quantities of interest of our process.
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The embedded DTMC

Let (Xt)t�0 be a process following one of the above constructions and let Yn be
the discrete time Markov chain giving the (ordered) sequence of states visited by
(Xt)t�0 (I.e., the DTMC given in Construction 1.) Yn is called the embedded
discrete time Markov chain associated with Xt . Moreover, the transition
probabilities of Yn are given by the values r(i , j). That is

P(Yn+1 = j | Yn = i) = P(next state visited by X is j | X is currently in state i)

= r(i , j).

Note that the embedded discrete time Markov chain keeps track of the “changes
of state” of the continuous time Markov chain. Therefore it never stays put in
the same state: that is why transition probabilities r(i , i) are set to 0 for every
state i .

Bibbona, SP, 11/64
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Examples: Poisson process

Let N(t) be a rate � Poisson process. Note that this process follows the above
construction with

r(i , i + 1) = 1, and ⌧i ⇠ Exp(�).

The Q matrix is below as well as the transition matrix P for the embedded
DTMC

Q =

0

BBB@

�� � 0 0 · · ·
0 �� � 0 · · ·
0 0 �� � · · ·
...

... . . . . . .

1

CCCA
P =

0

BBB@

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
... . . .

1

CCCA
.

Note that we could have � > 1.

Bibbona, SP, 12/64

È
b

ggi
9 fi 8 dCi rata d



Examples: ABC

Consider the 3 state model with S = {A,B ,C}

Q =

0

@
�3 1 2
0 �4 4
2 6 �8

1

A .

We can draw the situation by means of a transition graph:

A B

C

1

2

42

6

where the numbers on top of the arrows describe the transition rates.
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Examples: ABC

The embedded chain has the same state space and transition matrix

P =

0

B@

0 1
3

2
3

0 0 1
1
4

3
4 0

1

CA

For comparison, the transition graph of the embedded DTMS:

A B

C

1
3

2
3

11
4

3
4

The holding times in states A,B , and C are exponentially distributed with
parameters 3, 4 and 8, respectively.
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Examples: ABC

0 0.5 1 1.5 2 2.5 3

t

A

B

C

X
t

Simulation of X
t
 up to time 3
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Examples: ABC

A

B

C

Y
n

Corresponding embedded discrete time Markov chain

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n
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M/M/s queue

In queueing theory, the notation M/M/s means:
the arrivals are Markovian, meaning that customers arrive according to a
Poisson process: the time between two arrivals is ⇠ Exp(�)
the service times are Markovian, meaning that they are independent and
exponentially distributed with a common rate µ;
there are s servers that works in parallel.

To make it more concrete you can think at a bank with s teller stations.
Try to guess the generator.

The answer is

q(n, n � 1) =

8
><

>:

0 if n = 0
nµ if 1  n  s q(n, n + 1) = �

sµ if n � s

Bibbona, SP, 17/64
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The Markov property

We say that a continuous process (Xt)t2[0,1) has the Markov property if for any
s, t > 0 and any

0  s0 < s1 < · · · < sn < s

and states i0, i1, . . . , in, i , j , we have

P(Xt+s = j | Xs = i ,Xsn = in, . . . ,Xs0 = i0) = P(Xt+s = j | Xs = i).

Moreover, as in the discrete time case, we will only consider time homogeneous
cases, that is we always assume that

P(Xt+s = j | Xs = i) = P(Xt = j | X0 = i0).

Bibbona, SP, 18/64
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DTMCs enjoy the Markov property

The idea is the following.
If you know that Xs = i , then the residual holding time at i from time s on
will still be ⇠ Exp(�(i)) by the memoryless property.
Then by construction the process will jump with a target state that is
independent from the holding time and reiterate this behavior, following the
original construction.

Therefore, after time s the process will start anew from state i with the same
law that it would have had if i had been the initial state, irrespectively of all the
history of the process before time s.

Bibbona, SP, 19/64



Markov Prop + Discrete state space =) CTMC

the proof mainly boils down to prove that
the holding times of (Xt)t2[0,1) must be exponentially distributed
the jumps directions are independent on the holding times

so (Xt)t2[0,1) follows Construction ??).
Now, we suppose X0 = i and let ⌧i denote the time we transition away from
state i . Our goal is to prove that ⌧i has the memoryless property, and is
therefore exponentially distributed.
This follows from the fact that if a continuous random variable has the
memoryless property, then it is exponentially distributed.

Bibbona, SP, 20/64



Markov Prop + Discrete state space =) DTMC

Let s, t � 0 and ⌧i be the holding time at i

Pi (⌧i > s + t | ⌧i > s)

= P(Xr = i for r 2 [0, s + t] | Xr = i for r 2 [0, s])
= P(Xr = i for r 2 [s, s + t] | Xr = i for r 2 [0, s]) (P(A \ B | A) = P(B |A))
= P(Xr = i for r 2 [s, s + t] | Xs = i) (Markov property)
= P(Xr = i for r 2 [0, t] | X0 = i) (time homogeneity)
= Pi (⌧i > t).

Finally, the jump direction of (Xt)t2[0,1) cannot depend on the past, hence it
cannot depend on the holding time in one state nor on the directions of the
previous jumps: they have to follow a DTMC (the embedded DTMC).
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Transition probabilities

In the context of discrete time Markov chains, we defined the n-step transition
probabilities p

(n)(i , j). Similarly, we define the transition probability for a
continuous time Markov chain as

pt(i , j) = P(Xt = j |X0 = i).

We still have the analogue of the DT Chapman-Kolmogorov equation

Theorem (Chapman-Kolmogorov)
Consider a continuous time Markov chain (Xt)t�0. Then, for any real s, t > 0

ps+t(i , j) =
X

k

ps(i , k)pt(k , j).

Bibbona, SP, 22/64
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Transition probabilities

The structure of the proof is exactly the same as in the discrete time case. We
have

P(Xs+t = j |X0 = i) =
X

k

P(Xs+t = j |Xs = k ,X0 = i)P(Xs = k |X0 = i)

=
X

k

P(Xs+t = j |Xs = k)P(Xs = k |X0 = i) (by Markov pr.)

=
X

k

P(Xt = j |X0 = k)P(Xs = k |X0 = i) (by homogeneity)

=
X

k

pt(k , j)ps(i , k).
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From transition probabilities to transition rates

Let ⌧i be the holding time in state i . We know that ⌧i ⇠ Exp(�(i)). Consider a
small interval of time [0, h]. Given that X0 = i , the probability that a jump
occurs in [0, h] is

Pi (⌧i < h) = 1� e
��(i)h = 1�

✓
1 � �(i)h +

(�(i)h)2

2
+ . . .

◆
= �(i)h+O(h2),

From the above calculation, in particular we have

lim
h!0

Pi (⌧i < h)

h
= �(i) + lim

h!0
O(h) = �(i).
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From transition probabilities to transition rates

The probability of two or more jumps in [0, h] is O(h2). Here is why: let Y0 and
Y1 denote the initial and the second visited states of the chain, respectively:

P(2 or more jumps in[0, h]|Y0 = i ,Y1 = j) = P(⌧i + ⌧j < h)

 P(⌧i < h, ⌧j < h)

= P(⌧i < h)P(⌧j < h) (by independence)

= �(i)�(j)h2 + O(h3) = O(h2)

P(2 or more jumps in[0, h]|Y0 = i) =

=
X

j

P(2 or more jumps in[0, h]|Y0 = i ,Y1 = j) · P(Y1 = j |Y0 = i)

=
X

j

O(h2)P(Y1 = j |Y0 = i) = O(h2)

The last equality holds due to the dominated convergence theorem.
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How many jumps in [0, h] with h small

Take home message:
1 the probability of one jump in one interval [0, h] goes to zero as h

2 he probability of two or more jumps in [0, h] goes to zero as h
2.

Bibbona, SP, 26/64



From transition probabilities to transition rates

The transition rates are basically the derivatives of the transition probabilities
calculated at 0: for i 6= j we have

dpt(i , j)

dt
(0) = lim

h!0

ph(i , j)� p0(i , j)

h
= lim

h!0

ph(i , j)

h
= q(i , j).

Moreover, if i = j we have

dpt(i , i)

dt
(0) = lim

h!0

ph(i , i)� p0(i , i)

h
= lim

h!0

⇣
1 �

P
j 6=i ph(i , j)

⌘
� 1

h

= lim
h!0

�
P

j 6=i ph(i , j)

h
= �

X

j 6=i

q(i , j) = Q(i , i) = ��(i)

Bibbona, SP, 27/64
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From transition probabilities to transition rates

Moreover, for any i , j 2 S with i 6= j we have

lim
h!0

ph(i , j)

h
= q(i , j).

Indeed

lim
h!0

ph(i , j)

h
= lim

h!0

P(Xh = j |Y0 = X0 = i)

h

= lim
h!0

P(Xh = j , only one jump in [0, h]|Y0 = X0 = i)

h

+
P(Xh = j , two or more jumps in [0, h]|Y0 = X0 = i)

h

= lim
h!0

✓
P(⌧i < h,Y1 = j , ⌧j > h � ⌧i |Y0 = X0 = i)

h
+

O(h2)

h

◆

independence! = lim
h!0

✓
P(⌧i < h)

h
P(Y1 = j |Y0 = i)P(⌧j > h � ⌧i |⌧i < h) +

O(h2)

h

◆

= �(i) · r(i , j) · 1 = q(i , j).
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Explosions

Costruction 1 has a problem: we denote by ⌧Yi the i-th interarrival, and the n-th
arrival time Tn = ⌧Y1 + ⌧Y2 + · · ·+ ⌧Yn . If

Tn ! 1, as n ! 1,

then the process is defined for all t � 0. However, what happens if the limit is
finite? Then the process is defined only up to

T1 = lim
n!1

Tn =
1X

i=1

⌧Yn .

This is called an explosion. In this case the process has infinitely many jumps in
a finite interval. These pathological behavior creates several technical troubles
and we assume that all MC we are dealing with are non explosive. Giving
sufficient conditions for non-explosiveness is sometimes a challenging problem,
though.

Bibbona, SP, 29/64
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Kolmogorov’s equations (from trans. rates to trans. probs.)

If S is finite, the transition probabilities pt(i , j) form a true matrix that we
denote Pt . Remember that Q = P

0
0 and that by the Ch-K eqns.

Pt+h = PtPh = PhPt . Therefore

P
0(t) = lim

h!0

PtPh � Pt

h
= P(t) · lim

h!0

Ph � I

h
= PtQ =) P

0(t) = PtQ

P
0(t) = lim

h!0

PhPt � Pt

h
= · lim

h!0

Ph � I

h
Pt = QPt =) P

0(t) = QPt

that are called forward and backword Kolmogorov eqns. In components they read

p
0
t(i , j) =

X

k 6=j

pt(i , k)q(k , j)� pt(i , j)�(j)

p
0
t(i , j) =

X

k 6=i

q(i , k)pt(k , j)� �(i)pt(i , j)

Bibbona, SP, 30/64
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Kolmogorov’s equations (from trans. rates to trans. probs.)

If S is infinite, but the chain is non explosive the equations in components
are still valid and the series there appearing are convergent.
In the explosive case, there might be troubles

Explosive chains are treated in details in Chung, Markov Chains with Stationary
Transition Probabilities, Springer 1967.
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Kolmogorov’s equations (from trans. rates to trans. probs.)

We focus on Kolmogorov’s backward eqn: P
0
t = QPt . In dimension 1 it reads

p
0(t) = qp(t) with q a constant. We have the solution p(t) = p(0)eqt .

Something similar happens in higher dimension: we can define the exponential
matrix

e
Qt =

1X

k=0

t
kQ

k

k!
,

where Q
0 = I . We have that eQ0 = I = P0.

Theorem
Let (Xt)1t=0 be a non-explosive CTMC. Then, for any t � 0

Pt = e
Qt .

Techniques are available to calculate e
Qt as a function of t, most symbolic

computation software can do that.
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Absorbing states

A problem with Construction 1 is that in the presence of absorbing states we
should redefine the embedded CTMC. Indeed after the system reaches an
absorbing state, there is no next state. To be consistent we set the following
agreement

if i is absorbing, then q(i , j) = 0 for any j , meaning that to exit i (towards
any state j) we need to wait a degenerate exponential time with an infinite
mean.
�(i) =

P
j 6=i q(i , j) = 0 and the whole raw of the generator Q

corresponding to the absorbing state i has zero entries
an absorbing state i in a DTMC is such that the transition matrix
p(i , j) = �i ,j . Analogously for the embedded DTMC, we set r(i , j) = �i ,j for
all absorbing states i . Therefore for absorbing states (and only for them)
the transition matrix of the embedded DTMC has diagonal entries equal to
1 (and therefore non-vanishing)!

Bibbona, SP, 33/64
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Stationary distributions and measures

Let (Xt)1t=0 be a CTMC. We say that ⇡ is a stationary distribution if it is a
probability distribution, and if for all j 2 S and all t � 0.

P(Xt = j | X0 ⇠ ⇡) =
X

i

⇡(i)pt(i , j) = ⇡(j)
Theorem
Let (Xt)1t=0 be a non-explosive CTMC. Then, ⇡ is a stationary distribution if
and only if ⇡Q = 0 (and ⇡ sums up to 1).

Proof:
) Since ⇡ is stationary, ⇡ = ⇡Pt . Taking derivative we have ⇡P 0

t = 0 and
applying the forward Kolmogorov eqn. we conclude ⇡P 0

t = ⇡PtQ = ⇡Q = 0.
We skipped the necessary technical details requires if S is infinite, but the result
still holds.

( we have ⇡P 0
t = ⇡QPt by the backward eqn. If ⇡Q = 0, then ⇡P 0

t = 0.
Therefore ⇡Pt is constant and ⇡Pt = ⇡P0 = ⇡
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Finite irreducible chains

The CTMC (Xt)t�0 is irreducible if so is the embedded DTMC. That is, if for
any two states i , j , we can get from i to j in a finite number of steps.

For a finite irreducible chain we can find a stationary distribution if we can solve
the linear system (

⇡Q = 0
⇡ · e = 0

Where e is a vector whose length is the same as that of ⇡ (the cardinality of S)
and all entries are 1.
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Example

Then, assume that the transition rate matrix is

Q =

2

4
�1/3 1/3 0

0 �1/4 1/4
1 0 �1

3

5

Then, we can find the stationary distribution by solving ⇡Q = 0, with the
additional constraint that ⇡ sums to 1. No matter the strategy we use, in this
case we obtain

⇡ =

✓
3
8
,
1
2
,
1
8

◆
.

Bibbona, SP, 36/64
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Stationary measures CTMS vs. embedded DTMC

Cosider a two state CTMC with transition rate matrix

Q =

✓
�↵ ↵
� ��

◆

with ↵,� � 0 and ↵+ � > 0. Then, ⇡ =
⇣

�
↵+� ,

↵
↵+�

⌘
is a stationary

distribution of the continuous time Markov chain. The corresponding embedded
DTMC has transition matrix

P =

✓
0 1
1 0

◆

and its stationary distribution is ⇡̃ =
�1

2 ,
1
2
�
. Certainly the two differ. Is there

any connections in general?
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Stationary measures CTMS vs. embedded DTMC

Theorem
Consider a continuous time Markov chain with no absorbing states. Then µ is a
stationary measure of the embedded discrete time Markov chain if and only if �,
defined entry-wise by

�(j) =
µ(j)

�(j)
,

(where �(j) is as usual the rate of the holding time in j), satisfies �Q = 0.
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Proof

Since no absorbing states, r(j , j) = 0 for all j . µ is a stationary measure of the
embedded chain iff µP = µ, iff (since µ(j) = �(j)�(j)),

X

i 6=j

�(i)�(i)r(i , j) = �(j)�(j)

for all j 2 S . Using that r(i , j) = q(i , j)/�(i) we have that stationarity of µ is
equivalent to X

i 6=j

�(i)q(i , j) = �(j)�(j)

for all j 2 S and, the latter can be rewritten as
0

@
X

i 6=j

�(i)Q(i , j)

1

A+ �(j)Q(j , j) = 0

and it holds for any j 2 S if and only if �Q = 0, concluding the proof.
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Stationary measures CTMS vs. embedded DTMC

Why is the previous theorem important?

If the continuous time Markov chain is non-explosive and
P

�(i) is finite, then
we can normalize � to get a stationary distribution! We can also go in the
opposite direction and calculate the stationary distributions (if any!) of the
embedded discrete time Markov chain from those of the continuous time Markov
chain.
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Example

Consider again the 2-state CTMC with transition rate matrix

Q =

✓
�↵ ↵
� ��

◆

The stationary distribution of the embedded DTMC is ⇡̃ =
�1

2 ,
1
2
�
. How can we

find the stationary distr. of the CTMC, without solving ⇡Q = 0? Define

� =

✓
⇡̃(1)
�(1)

,
⇡̃(2)
�(2)

◆
=

✓
1
2↵

,
1
2�

◆
.

We know that �Q = 0. However, � is not a distribution. Define
M = �(1) + �(2) = ↵+�

2↵� and let ⇡ = 1
M � =

⇣
�

↵+� ,
↵

↵+�

⌘
. Then, ⇡ is a

stationary distribution for the CTMC since ⇡Q = 0 and ⇡(1) + ⇡(2) = 1 and
the chain is not explosive.
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Stationary measures of finite CTMS vs. embedded DTMC

Corollary
An irreducible CTMC with finitely many states has a unique stationary
distribution ⇡. Moreover, for every state j we have ⇡(j) > 0.

The embedded DTMC is irreducible and has finitely many states. Hence, it has
a unique stationary distribution ⇡̃. Moreover, ⇡̃(j) > 0 for any j . In order to
prove the statement, we first show that ⇡ exists and then that is it unique:
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Stationary measures CTMS vs. embedded DTMC

Existence: consider the vector � defined by �(j) = ⇡̃(j)
�(j) for all j . Then we know

that �Q = 0. Moreover,
P

j �(j) = M < 1 because the state space is finite.
Hence, ⇡ = 1

M � satisfies

⇡Q =
1
M

�Q = 0 and
X

j

⇡(j) =
1
M

X

j

�(j) = 1.

Hence, since the continuous time Markov chain is finite and therefore
non-explosive, ⇡ is a stationary distribution of the continuous time Markov
chain. Moreover, for any state j

⇡(j) =
1
M

�(j) =
µ(j)

M�(j)
> 0.
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Stationary measures CTMS vs. embedded DTMC

Uniqueness: Let ⇡ and ⇡0 be two stationary distributions of the continuous time
Markov chain. We want to prove that necessarily ⇡ = ⇡0. Let

C =
X

j

⇡(j)�(j) and C
0 =

X

j

⇡0(j)�(j)

Since ⇡̃ is unique, we have that for any state j

⇡̃(j) =
⇡(j)�(j)

C
=

⇡0(j)�(j)

C 0 ,

which implies that for any state j , ⇡(j) = C 0

C ⇡0(j). If are able to show that
C

0/C = 1 we are done. But this follows from

1 =
X

j

⇡(j) =
X

j

C
0

C
⇡0(j) =

C
0

C

X

j

⇡0(j) =
C

0

C

so the proof is concluded.
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Limit distribution, example

Consider a 2-state continuous time Markov chain with state space S = {1, 2}
and transition rate matrix

Q =

✓
�↵ ↵
� ��

◆
,

with ↵,� > 0. We have seen that the stationary distribution for this model is
given by

⇡ =

✓
�

↵+ �
,

↵

↵+ �

◆
.

The transition probabilities are given by

Pt = e
Qt =

 
�

↵+� + ↵
↵+� e

�(↵+�)t ↵
↵+�

�
1 � e

�(↵+�)t
�

�
↵+�

�
1 � e

�(↵+�)t
�

↵
↵+� + �

↵+� e
�(↵+�)t

!
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Limit distribution, example

it follows that

Pt ���!
t!1

 
�

↵+�
↵

↵+�
�

↵+�
↵

↵+�

!
=

✓
⇡(1) ⇡(2)
⇡(1) ⇡(2)

◆

Specifically,

lim
t!1

pt(i , 1) = ⇡(1) for all i 2 {1, 2}

lim
t!1

pt(i , 2) = ⇡(2) for all i 2 {1, 2}

Hence, the transition probabilities converge to the stationary distribution!
REMARK: the embedded DTMC is periodic, therefore it does not have a limit
distribution.
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Limit distribution

For CTMCs the notion of periodicity does not exist! We have

Lemma
If Xt is irreducible, then pt(i , j) > 0 for any states i , j and for any t > 0.
Since periodicity was the only thing preventing an irreducible DTMC from
converging, we expect that convergence will occur more often in the continuous
time setting. This is true, except for the case of explosions (that do not exist in
DTMC).

Theorem
If a CTMC (Xt)1t=0 is irreducible and a has stationary distribution ⇡, then for
any i , j 2 S , we have limt!1 pt(i , j) = ⇡(j).
Remember that to prove the existence of a stationary distribution � it is not
enough to check that �Q = 0 and

P
i �(i) = 1, but we also need to know that

the chain is not explosive!
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Return times

In continuous time if X0 = j , then Xt will stay in state j for a positive amount of
time. To account for this fact, the concept of return time needs to be redefined
as follows

T
c
j = min{t � 0 : Xt enters in j from another state}
= min{t � 0 : Xt = j and Xs 6= j for some 0  s < t}

Remark: with the given definition the return time to an absorbing state is
infinite.
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Return times and recurrence

In continuous time if X0 = j , then Xt will stay in state j for a positive amount of
time. To account for this fact, the concept of return time needs to be redefined
as follows

T
c
j = min{t � 0 : Xt enters in j from another state}
= min{t � 0 : Xt = j and Xs 6= j for some 0  s < t}

Remark: with the given definition the return time to an absorbing state is
infinite.

Definition
A state j of a CTMC is recurrent if either Pj(T c

j < 1) = 1 or if j is absorbing.
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Return times and recurrence

The return time T
c
j of a CTMC is related to the return time T

d
j of its

embedded DTMC as follows. Let us define ⌧Yn�1 the n � th waiting time of the
CTMC, that is the time elapsed between the (n � 1)th and the nth jump. We
have ⇠ Exp(�(Yn�1)), and hence it is a.s. finite. We have

T
c
j =

Td
jX

n=1

⌧Yn�1 ,

therefore T
c
j is finite if and only if T d

j is finite.

Theorem
Let (Xt)1t=0 be a non-explosive continuous time Markov chain. Then, j is a
transient (resp. recurrent) state for the continuous time Markov chain (Xt)1t=0 if
and only if it is a transient (resp. recurrent) state for the embedded discrete
time Markov chain (Yn)1n=0.
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Positive and null recurrence

Let (Xt)1t=0 be a CTMC, and let j be a recurrent state. We say that
j is positive recurrent if Ej [T c

j ] < 1 or if j is absorbing;
j is null recurrent if it is not positive recurrent: that is, if Ej [T c

j ] = 1 and j

is not absorbing;
As for discrete time Markov chains, the following holds:

Theorem
Let (Xt)1t=0 be an irreducible continuous time Markov chain with state space S .
Then the following are equivalent:

1 every state in S is positive recurrent.
2 some state in S is positive recurrent.
3 There exists a stationary distribution ⇡.
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Asymptotic frequency

The asymptotic freq. of state j is defined as the fraction of time spent therein:

lim
t!1

Nt(j)

t
= lim

t!1

1
t

Z t

0
1{j}(Xs)ds.

Theorem
Let (Xt)1t=0 be an irreducible CTMC, with arbitrary initial distribution. To avoid
dealing with absorbing states (trivial), assume that the state space has at least 2
states. Then, for any j 2 S ,

lim
t!1

Nt(j)

t
=

1
Ej [T c

j ]�(j)
a.s.

Theorem
Let (Xt)1t=0 be an irreducible CTMC. We assume that S contains at least two
states. If ⇡ is a stationary distribution, then

⇡(j) =
1

�(j)Ej [T c
j ]
.
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Asymptotic reward

Theorem
Let (Xt)1t=0 be an irreducible CTMC, with arbitrary initial distribution. Assume
there exists a stationary distribution ⇡. Then, for any bounded function
f : S ! R we have

lim
t!1

1
t

Z t

0
f (Xs)ds =

X

j2S
f (j)⇡(j) a.s.

That is the time average converges to the space average, computed over the
stationary distribution ⇡.

Proof.
We have (the second equality holds for the bounded convergence theorem)

lim
t!1

1
t

Z t

0
f (Xs)ds = lim

t!1

X

j2S

Nt(j)

t
f (j) =

X

j2S
lim
t!1

Nt(j)

t
f (j) =

X

j2S
f (j)⇡(j),
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Reaction networks

Chemical Reaction Networks (CRNs) are popular mathematical models of
several phenomena in system biology, epidemiology, population dynamics,
telecommunications, chemistry. In such models, individuals are identical units
(e.g. molecules), classified into several groups (e.g. chemical species) and
interact through the so-called reactions. A reaction means, for example, an
individual eating one of another group, or dying, or reproducing, as well as a
protein binding with the RNA to regulate gene expression. Reactions (as it
happens in chemistry) are organised in a graph.
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Example

An epidemic SI model. This is a more complex system. There are two population
and the state is identified by the couple (S , I ) that denotes the numbers of
susceptible S and infected I . In any given state 6 transitions may occur.

reaction descr. rate increment
; ! S immigration �1 (+1,0)
; ! I immigration �2 (0,+1)
S ! ; emigration/death �3S (-1,0)
I ! ; death/emigration �4I (0,-1)
S + I ! 2I infection �5SI (-1,+1)
I ! S recovery �6I (+1,-1)

The reaction graph has two connected components and will be drawn on the
blackboard
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Example

Prey-predator.
This is a more complex system. There are two population and the state is
identified by the couple (p,P) that denotes the numbers of preys p and
predators P . In any given state 4 transitions may occur

reaction descr. rate increment
p ! 2p prey reproduction �1p (+1,0)
p + P ! P prey consumption �2pP (-1,0)
p + P ! p + 2P predator reproduction �3pP (0,+1)
P ! ; predator death �4P (0,-1)
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Reaction networks

A reaction network is a triple {S, C,R} such that
1 S = {S1, · · · , Sd} is the set of species of cardinality d where d is finite.
2 C is the set of complexes, consisting of some nonnegative integer linear

combination of the species.
3 R is a finite set of ordered couples of complexes which is defined by the

stoichiometric equations (1).
A reaction network of K chemical reactions is specified by stoichiometric
equations

dX

i=1

ykiSi !
dX

i=1

y
0
kiSi , shortly yk ! y

0
k , k = 1, . . . ,K (1)

meaning that the reaction consumes
P

ykiSi to produce
P

y
0
kiSi where yki , y 0ki

are nonnegative integers.
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Stochastic Models of Reaction networks

The state of a reaction network model is specified by the vector

s = (s1 · · · sd)

which counts how many molecules of each species are present in a given instant.
Thus S ⇢ Nd .

The occurrence of the reaction y ! y
0 causes a state change (a jump) from s to

s + y
0 � y . This is an event of a Markov chain process, whose rates have to be

specified. An exponential race between the different reaction takes place, and
such race decides which reaction take place first.
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Stochastic Models of Reaction networks

The network follows the mass-action kinetics if the rate of reaction k in state s

can be written in the form

q(s, s + y
0 � y) = �y!y 0(s) = y!y 0

s!

(s � y)! {s�y} (2)

�y!y 0(s) > 0 if and only if s � y component-wise. �y!y 0(s) is the transition
propensity for reaction y ! y

0.

Examples with species A,B,C:

A ! B has rate �A!B(a, b, c) = A!Ba

A+ B ! C has rate �A!B(a, b, c) = A+B!Cab

2A ! C has rate �2A!C (a, b, c) = 2A!Ca(a� 1)
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Example

Observe that the following reaction network

;
µ
⌧
�

Q

coincide with a M/M/1 queue
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Density dependent families of Markov chains

A family of Markov chains X
V (t) with state space S

V ✓ Nr
+, is density

dependent iff
in each configuration only a finite number of state changes is possible
the initial condition X

V (0) = V · x0

for every possible state change l , there exists a continuous positive function
fl : Rr ! R such that the instantaneous transition rate can be written as

q
V (k , k + l) = Vfl

✓
k

V

◆
, l 6= 0.

Remark: mass-action rates are density dependent if the constants are scaled:

A ! B has rate �A!B(a, b, c) = A!Ba = VA!B
a

V

A+ B ! C has rate �A!B(a, b, c) = 0A+B!Cab = VA+B!C
a

V

b

V

2A ! C has rate �2A!C (a, b, c) = 02A!Ca(a� 1) = V2A!C
a

V

a� 1
V
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Density processes

For any density dependent family X
V (t) it makes sense to consider the density

processes

Z
V (t) =

X
V

V
(t)

Its states are concentrations x = k
V and belong to Qr

+ ⇢ Rr
+. Its rates are

Q
V
x ,x+ l

V
= Vfl (x) , l 6= 0.

thus if V ! 1 the events of the density process becomes very frequent and
cause small state changes.
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Kurtz deterministic continuous approximations

Kurtz proved in the ’70-’80 that the density process converges a.s. to the
deterministic solution x(t) of the following d-dimensional ODE system

ẋ = F (x(t)) =
X

l2C
lfl(x(t)) (3)

under rather general assumptions. The proof relies on the previously introduced
LLN for the Poisson process.
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Kurtz deterministic continuous approximations

The precise statement follows

Theorem
Suppose that for each compact K ⇢ E ,

X

l

|l | sup
x2K

fl(x) < 1

and the function F defined in (3) is Lipshitz continuous in K , suppose that for
each n X

[V ](t) is DD with initial conditions X
[V ](0) such that

limn!1 X
[V ](0) = x0 and x(t) solves (3) with initial condition x(0) = x0, then

for every t � 0,
lim
n!1

sup
st

|X [V ](s)� x(s)| = 0 a.s.
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